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Introduction




Noise vs. Complexity

- Cells operate in noisy molecular environments

- Via complex regulatory networks produced by evolution
- For each network, we can analyze the noise
+ But how does noise related to (growing) network complexity?

- For a fixed function, does complexity reduce noise?

- Beyond the mere increase of overall molecular counts?
- Complexity could provide and advantage counteracting its costs




Noise in Multistable Systems

- A little noise can lead to different outcomes

- We investigate biochemical switches — bistable systems

- In previous work

+ The (classical) cell cycle switch implements an optimal(-speed) switching algorithm
+ More recent and more complex models do the same
- All that with deterministic (ODE) semantics

- On that basis

- We can compare networks of different complexity “fairly”
- And investigate how they differ in terms of noise characteristics




Comparing Networks

- For chosen initial conditions

- Certain networks of different complexity have identical output (trajectories)
- Hence they have compatible function

- Why would then evolution choose complexity?

- Likely many different reasons and tradeoffs
- We investigate reduction in noise levels
- Trying to separate it from other effects




Methods
- Bounding the problem by different techniques

+ Chemical Master Equation
- Slow and accurate at low molecular counts, unfeasible at high counts

- Linear Noise Approximation
- Fast and accurate “in the thermodynamic limit”, inaccurate at low counts

- The biological regime falls in the middle of the two
- Computationally (and analytically) inaccessible, but bounded by consistent results

- We observe that

- For equivalent (deterministic) function, more complex networks “tend to" exhibit a
reduction in intrinsic noise. Both size and structure matter

- Not simply attributable to the larger molecular counts of the larger networks




To carry this out we need

- A notion of “function”

- Many different networks of different size that all “do the same thing”

- A baseline for comparison

- Deterministic traces

- Ways of investigating noise
- Numerical simulations of exact or approximate kinetics

- The fundamentally non-linear aspect of chemical kinetics
prevent analytical methods for most examples of interest




Biochemical Networks




Network model

- Influence networks

- Influence species: two main molecular states (high/low or modified/unmaodified)
+ High-low transitions are nonlinear (e.g. sigmoidal)
- Exact transition kinetics varies (but we fix one uniformly)
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Network Evolution

Across species: Ortholog genes
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Comparing Networks

High-value activity:

- 2001 Nobel prize in Physiology for the discovery of “Key regulators of the cell cycle ... they
have identified key molecules that regu/az‘e the cell cycle in all eukaryotic organisms, mcludmg
yeast, plants, animals, and human."

- These are not the same molecules in all organisms, but it is still “the same network”

- Network differences expose evolution
- Tracing back ancestral networks from current ones

Networks are algorithms
- Algorithms fall in different performance classes (is nature “optimal”?)
- Different networks for the same function may or may not be in the same class

- How do we compare networks?
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Network Emulation

NCC

[ 0 ].

L]

» emulation (transitive)




How to model “Influence”

"True” molecular interactions. “Equivalent” influence interactions.

-

b)

o3 = a) . N [Ad -
bl b AL AL @) R0 SN N
E.0vC el ‘.INH" /] g N \ \ |
LI T & _® SV
SN NN /AN

Figure 4: a) Schematic diagram of a primitive cell cycle in the reinitz framework.

Figure 3: a) Schematic diagram of a simplified SIMM model [17]. The activa-

Chemical Reaction Network « > Influence Network
I IS TR T ) LN D ) Instead of modeling basic interactions, such as binding, synthesis, and degra-
E\-(J]\-ng a pf]l’ll]’[ﬂ- € Elll\dT} otic C{H C“ : l{’ ?\I()d{'l dation of molecular components, this framework models interactions simply as
- ] i activation or inhibition. This approach also reduces the number of nodes nec-
Malte Liicken, Jotun Hein, Bela Novak essary In the network, as e.g. the inhibitor binding tightly to the activator to

form a complex, which produces phosphorylated inhibitor to be degraded un-
der catalysis by the activator, is now simply a double negative feedback loop
shown in Figure[I} This type of interaction is the basis of both aforementioned
molecular model, therefore they can both be summarized in a single Reinitz
model.
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activation =@

The Triplet Model of Influence hibiion

inhibit x
inhibition
high —x«- low = xishigh XX, — xz—-— X is low
(modiﬁed)"-.,.__I‘.‘.-'; (unmodified)
activation
activate x
Usually modeled by triplet motif

sigmoid (e.g. Hill or
Reinitz) functions

biological mechanism:
(e.g.;) multisite
phosphorylation

We model them by
4 mass action reactions over
3 species X, Xy, X5

They actually implement a
Hill function of coefficient 2:

N\ %0
Nxt
\ 2

r;=0.1
r10=10.0
rp;=0.1
1, =10.0

catalysis -o

For example:

Approximate Majority
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Consensus Networks




A Consensus Problem

- Population Consensus

- Given two populations of x and y "agents”
- We want them to “reach consensus”

+ By converting all agents to x or to y S,DeC[ﬁCC]nOH
depending on which population was in majority initially .
XY = X+Y, 0 if Xo2Y,

- Population Protocols Model XY =0, X+Y if Yo2Xg

- Finite-state identity-free agents (molecules) interact in
randomly chosen pairs (= stochastic symmetry breaking)

- Each interaction (collision) can result in state changes
- Complete connectivity, no centralized control (well-mixed solution)
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A Consensus Algorithm
- Approximate Majority (AM) Algorithm

- Uses a third "undecided” population b
- Disagreements cause agents to become undecided
- Undecided agents agree with any non-undecided agent
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A Biological Implementation

Approximate Majority (AM)

T :
1) Bistable
Even when initially x=y (stochastically)

2) Fast (asymptotically optimal)
O(log n) convergence time

3) Robust to perturbation
above a threshold, initial majority wins whp

Dana Angluin - James Aspnes - David Eisenstat

A Simple Population Protocol for Fast Robust
Approximate Majority 2007
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Figure 1. Basic Ingredients of the Model

Theoretical Analysis of Epigenetic
Cell Memory by Nucleosome Modification
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Not always that simple

- The epigenetic switch seems a direct biological I
implementation of an algorithm P Q*T@i

- Although we may have to qualify that with some notion of
approximation of the (enzymatic) kinetics

- In most cases the biological implementation seems
more indirect or obfuscated
- "Nature (s subtle but not malicious - Einstein” Hal think again! 752
- Other implementations of Approximate Majority seem more
convoluted and approximate
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How to Build a Good Switch

- We need first a bistable system: one that has two distinct and stable
states. l.e., given any initial state the system must settle into one of
two states

- The settling must be fast (not get stuck in the middle for too long)
and robust (must not spontaneously switch back)

- Finally, we need to be able to flip the switch by external inputs

20




A Bad Algorithm cotalyss o

+ Direct Competition

- X catalyzes the transformation of y into x
-y catalyzes the transformation of x into y
- when all-x or all-y, it stops

- This system has two end states, but

- Convergence to an end state is slow (a random walk)

- Any perturbation of an end state can start a random
walk to the other end state (hence not really bistable)

Yy + X — X+ X
X+ty—=Yy+y

111111

21




A Good Algorithm

- Approximate Majority (AM) inhibition =
- Third, undecided, state b

- Disagreements cause agents to become undecided
- Undecided agents believe any non-undecided agent X

- With high probability, for n agents !

- The total number of interactions before converging is O(n log n)
= fast (optimal)

- The final outcome is correct if the initial disparity is w(sgrt(n) log n) o "
= solution states are robust to perturbations = N orst-cash scenarnio
- Logarithmic time bound in parallel time Koy ] SOTNG XY D=0
o N N
- Parallel time is the number of steps divided by the number of agents j::[
- In parallel time the algorithm converges with high probability in O(log n)

Dana Angluin - James Aspnes - David Eisenstat

A Simple Population Protocol for Fast Robust

Approximate Majority
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An “Ugly” Algorithm: Cell Cycle Switch

activation -
S o
l inhibition =4
yi

Nobel-prize T __I_

winning network — X

Obfuscation of a )
distributed T i
algorithm?

M PHASE

Metaphase-to- Anaphase transition

Gy PHASE

- Is it a good algorithm? Is it bad?
- |s it optimal or suboptimal?

S PHASE

Gi PHASE
Numerical analysis of a comprehensive model of M-phase control in

Xenopus oocyte extracts and intact embryos Start transition

Bela Novak* and John J. Tysont
Department of Biology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24060-0406, USA
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Convergence Analysis - CONSENSUS

- Switches as computational systems (s b s ahy wien

| |
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—t— 0.00355 0 0.00710 0 0.00710

. 15000 15
Start symmetrical roxlt,
(Xo=X{=X, etc.) -

Black lines: several stochastlc simulation traces
Color: full probability distribution of small-size system
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Steady State Analysis - SWITCH

+ Switches as dynamical systems

bias 1

ll_l bias

Cx
L 7 K -i-_TSTx
SX SX !

% csx, - 150

Black lines: deterministic ODE bifurcation diagrams
Red lines: noisy stochastic simulations
Color: full probability distribution of small-size system
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Antagonistic Networks hibiton
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Network Morphisms

When does a (complex) network
implement a (simpler) algorithm?




Comparing networks

How can we compare different networks?

- Different number of species
- Different number of reactions
- Apparently unrelated connectivity

So that we can compare their function?

- Does antagonism (in network structure) guarantee bistability (in function)?

- We do it by mapping networks onto one another
so that they emulate each other

- Deterministic semantics version of “simulation” of systems

- (Stochastic semantics was the starting point, but too difficult/demanding for typical
biological networks.)
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Mapping one network into another

+ Notion is strangely missing from the literature

Seen in Biology: single-network analysis (e.g. structure of feedback loops) and network reduction
(e.g. while preserving steady states). Study of common or frequent subnetworks.

Seen in C.S.: comparing network behaviors (e.g. morphisms of event structures).
Nothing much resembling (bi)simulation “on the syntax” (structure) of whole biochemical networks.

+ Model reduction is unavoidable and pervasive, but

Often criticized/ignored by biologists when it leads to quantities that are “not biologically
meaningful”. E.g. a fusion or change a variables in the ODEs where the new variables do not
correspond to biological parts. The reduced model should “inform” the original one.

: Soences ethos

The "truth” is the big network, not the small one!
If you depart from the truth in any way, you have to explain how you can get back to it.

The point is not to reduce the size of the network (although that's neat),
but to understand aspects of the big network by reference to a smaller one.

The mapping is more important than either networks.

Norbert Wiener

Pioneer of stochastic processes

and inventor of Cybernetics.

"The best material model of a
cat is another, or preferably the

same, cat”
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Network Emulation Ml emulates AM

- For any rates and initial conditions of AM, we can find some rates and initial
conditions of Ml such that the (6) trajectories of Ml retrace those (3) of AM:

o 1 1

y Z » X =
[ P vEx
(3 species)
Mmi AM
] o] / N initialize:
] z2 1 N\ x2
2 :(1’ 2 Zz=X
- E ~y =X
U.SE DSE (y2=X0
- Y1 =X
SR SR VR SR N T Yo = Xo)

(6 species on 3 trajectories) (3 species on 3 trajectories)

- How do we find these matching parameters? By a network morphism! 30




CRN Morphisms

A CRN morphism from (S, R) to (S, R)
written m € (S,R) - (S, R)

is a pair of maps m = (mg, mg)
a speciesmapms €S — S
a reaction map mgz € R - R

extended to a complex map ms € NS — N°
linearly: ms(p)s = Egems—1(5) Ps

Mappings (symmetries)
between two networks

LI

r Xt X | — %)

Lo

Yoe— Y1ie— Yo

x1 + xo T T

2,4
(TS

Yot+2zog Y112
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Network Emulation: Ml emulates AM

A mapping of species and reactions

] L ILI

| ; I:X0¢ . X e— X3

AM

any initial conditions

homomorphic mapping

Z->X
~y -> X

f; [ 1

f N initial conditions:
] Nz2
] N o
o 2,=Y, =X,
1— . Zl = yl = Xl
\ e T

less trivial than you might think:
it need not preserve the out-degree of a node!
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Network Emulation: S emulates AM

A mappmg of speoes and reactions _ Q:i’
m ] N any initial conditions

homomorphic mapping

initial conditions:

‘ 2
-y o] - Zp=Y2=Xp
‘ LZ . Z;1=Y15%

Z;=Yo =X,

Z->X
~y -> X

Si ZO‘ VZ]A _=22_
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Network Emulation: NCC emulates M

+ For any rates and initial conditions of Ml we can find some rates and initial
conditions of NCC such that the (18) trajectories of NCC retrace those (6) of Ml
(3 species each)

3 9\ Il - 2 T
Vi il zipoz el
?_/ I - 05 \ SZ ) Y,q,S >y 05_ | T T M

IIIIIIIIII IIIIIII
3 3

NCC Ml

(/// S S S

.

(18 species on 6 trajectories) (6 species on 6 trajectories) initialize
zZLp =z
yas =y
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Emulations Compose

- The (18) trajectories NCC can always retrace those (3) of AM

d i o«

{ Lp -z Z,~y-> X
1_ J_ // T _'I' YAy » — X --- The new cell cycle switch
late AM exactly.
T_ _T Zrp - X _ I - emg » iy

~Y,~Q,~S > X For any initial conditions

NCC AM of AM.

/ ..... / ' And for any rates of AM.
] A ] N\, x0
2.54 22 | e N
] 2 1 N2

IS SIS S
EREREAAD

(18 species on 3 trajectories) (3 species on 3 trajectories)
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Emulations are Modular

A L |
Ay m&
E_T I i 0 10 20 30 40 50

--------

t x0 1 2
B

-------------------

0 24 22 Yo vyl y2 wo wi w2

T — OO
TN HE
i f?'?“ - thook "!M‘!‘
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How to check for emulation

- How do we check a potential emulation morphism
for all possible initial conditions of the target?

- Statically! Check conditions on the joint stoichiometric
matrices of the two networks under the mapping.

- How do we check a potential emulation morphism

for all possible rates of the target?

- Can't; but if one emulation is found, then the rates of the
target network can be changed arbitrarily and a related
emulation will again exist.

37




Static Criteria for Emulation

Emulation Theorem: If m € (S,R) - (S, R)

is @ CRN reactant morphism and
stoichiomorphism then it is a CRN emulation

: T, o 7. T preserve enough
reactantmorphism — Mg” - p = P - Mg network structure

N _ _ ~ preserve enough
stoichiomorphism Y -Mp=Mg" QP chemical stoichiometry

U

emulation /P, F(Do ms) = F‘(i}) omg preserve derivatives

F is the differential system of (S, R), given by the law of mass action, ¥ is a
state of (S, R). ¢ is the stoichiometric matrix and p is the related reactant
matrix. mg and mg, are the characteristic 0-1 matrices of the morphism maps
ms (on species) and mg, (0N reactions). —Tis transpose.

Homomorphism implies reactant morphism.

Cardellil BMC Systems Biology 2014, 884
hitp: ) Lcom/175.

BMC
Systems Biology

RESEARCH ARTICLE Open Access

Morphisms of reaction networks that couple
structure to function

Luca Cardelli’™?

=AM
N

AM

]

—_— —
Xt Xj — X

:

:
U

YoerereY1

SR
»
N

:

—, —
~ Zoe— Z1e— 2,

:

Stoichiomorphims condition is
sufficient for “networks of interest”
and actually “close” to a necessary condition. 54




Applications of Emulation

Benchmarks from

M Od el Red U CtiO N Sneddon et al., Nature Methods, 2011

Compre cuotient CR Il ol il il
-+ Compute quotient CRNs

Find network symmetries Sssfios)| sbemt)| 222 GOiEte a==7eshad

that may be of biological interest es 786432 65538 167 192E+3 167 3.68E+3
M O rp h | S m G e n e ratl O n e7 172032 16286 122 8.15E+1 122 1.77E+2
. . eb 36804 4098 86 3.00E+0 86 7.29E+o0
Find morphisms between networks
(e.g. all the ones for a fixed rate assignment) i 2Bl R Sa | el | st [ERoE
eq4 1536 258 37 9.00E-3 37 1.09E-1
Forward and Backward Bisimulations for Chemical Satisfiability Modulo Differential Equivalence Relations e3 288 66 a0 1_00E—3 22 3_00E—3

Reaction Networks

Luca Cardelli Mirco Tribastone ~ Max Tschaikowski
arch and University of Oxford, UK ndrea Vandin

e2 48 18 12 1.00E-3 12 2.00E-3

Concur 2015 POPL 2016

Aggregation ‘ Emulation
reduction reductiony,




Noise Reduction
in Complex Switches




Basic Switches (deterministic)

A B c (A) Influence network diagrams

AT ] (B) Chemical reaction network diagrams and feedback loops

AM )1(—] - _,l . _,Ix | = — ijjé (C) Numerical solutions of the deterministic kinetics of the networks:

[3 | “_I ‘_]' ’ e o %=0 Horizontal axis is time
ol el Vertical axis is species concentration
- M| = 4022 First some arbitrary initial conditions are chosen for AM.
st D TN 1) ! =R Then the initial conditions of the other networks are chosen in such a
7 3 ) & = way that each trace of each of the other networks retraces exactly one
EEELE. trace of AM.
: This can be done for any initial conditions chosen for AM, and
;j—l 1 1 . / = indicates the potential of each of the other networks to operate as a
Z

=2

My v;:v.:voj S e 2| s =0 simpler switch.
L [f "TORX LT T ' = %=

I S14—r 514t S0 2 -

- Lo W2

w

—

CCr

X

——
b e c— Py

o Q0T =

l T2 11 o2, ¢ 1 2 3 a5

Noise Reduction in Complex Biological Switches

—_

Luca Cardellit>"", Attila Csikdsz-Nagy**", Neil Dalchau', Mirco Tribastone™T,
Max Tschaikowski™>"

(To appear.) 41




Basic Switches (stochastic)

Horizontal axes is time
B B c D Vertical axes is number of molecules.

AM Dxl_l

(A) Influence networks.

(B) Chemical Master Equation solution: probability distribution,
with color (in 10 bands from light = 0 to dark = 1) indicating the
probability that at time t there are y molecules of the single
indicated species.

(C) Chemical Master Equation solution: mean (solid lines) and
standard deviation (color bands) for the species in the network.

(D) Central Limit Approximation solution: mean (solid lines) and
standard deviation (color bands) for the species in the

-

N

* [

Mi ¥:| l:z

network.
Disentangle the contribution of
5‘_1 complexity to stochasticity
cer 2 Compare network noise on the baseline
I of deterministic emulation, across

networks of different size and strucfure




CME vs LNA in the limi
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AM at various system sizes
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More Complex Switches

i | 1 4 z, —F 4 z
2 f = = = —2—
T i —_— —2 2 ___:" :‘ 2 :: :?
GW 5 l X : —a —a 1 L —¥ 1 fps—W
| I KQ —d ——y i 0
r a —] —y2
frorr s 0 1 2 3 4 & 0 1 2 3 &4 &
2 T —t —a 4 4 7 —1,
z q
- = LA I==] 3 : e
NCC )E I —: e | 2 =
l l 1 s 1 1 ;3: ;:
3 wll pl "
p i1 el [==] ; ]

Horizontal axes are time, vertical axes are number of molecules.

(A) Influence networks.

(B) ODE solutions for comparison

(C) Chemical Master Equation solution: mean (solid lines) and standard deviation (color bands) for the species in the network.
(D) Central Limit Approximation solution: mean (black lines) and standard deviation (color bands) for the species in the network.
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INntrinsic Noise

A Forwards B Backwards

Network
AM
Mi

L]
CCr
— W
NCC

1571

Standard deviation
Standard deviation

Meathod
CME
——-ClA

Time Time

Complexity improves overall performance of the cell cycle switch. The performance of different networks was

evaluated by calculating the standard deviation of the main molecular states over time.

Standard deviations are calculated via numerical integration of the chemical master equation (CME) using the Visual GEC

software, and via numerical integration of the central limit approximation (CLA) in Matlab. We investigate switching in one

direction or the other by providing different initial conditions that settle (more likely) in different steady states.

(A) In the forward direction, principal molecular states were initialised at 2 copies, and complementary molecular states were initialised at 1 copy.
(B) In the reverse direction, principal molecular states were initialised at 1 copy, and complementary molecular states were initialised at 2 copies.

45




Extrinsic Noise

Wasserstein

Wasserstein

AM

CCr

log(Total parameter variation)

Wasserstein

Wasserstein
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- ¥
- & x v
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- a o X
P x %y
L = i X
- x - A % x
- x -
P x R
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log(Total parameter variation)

GW NCC
rd -
e o
e r
// 1= //
Ve o e
e @ -
e e Cl
> ] -
e & e
o *
// *x g //
s -~
0 1 2 3 0 1 2 3

log(Total parameter variation)

Complexity confers switching networks robustness to extrinsic noise. Extrinsic noise was analyzed by randomly perturbing the reaction rates of each

model. Variations in network behaviour were assessed in comparison to the behaviour of the default parameterisation, in which all
reaction rates are set equal to 1. Network variation was quantified using the summed Wasserstein metric over the whole probability distribution

over time.
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Noise vs. Complexity

- With corresponding initial conditions, all studied networks show the
same mean behavior

- CCr emulating AM is the simplest explanation of the core cell cycle
switching function

- Many other biological switches can be so reduced to an algorithm
with well-understood properties

- On the basis of kinetic similarity of mean behavior, we show
variations in noise behavior.

- Intrinsic noise tends to decrease with complexity, but this also
depends on network structure and not directly on total molecular
counts
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Complexity vs. Cost

- Complex networks, while more expensive, are less of a burden in
energy rich situations.

- The cell cycle operates only in such “wellness” conditions.

- Hence complex switches may have evolved to work better by using
More resources

- Complex network also reduce noise levels, so for a fixed noise level
that can be tolerated, they work at lower molecular level for each
species.

48




Conclusions




Walks in Network Space
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Walks in Network Space
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Walks in Network Space
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Networks are Algorithms

- They are methods for achieving a function

- We need to understand how these methods relate to each other
- In addition to how and how well they implement function
- Algorithms can be obfuscated, and nature can obfuscate networks (to what end?)

- Network emulation can be checked statically

+ By stoichiometric/reaction-rate (structural) properties
- That is, no need to compare ODE (functional) properties
- For any initial conditions and rates of (one of) the networks

- We can efficiently discover emulations

- Automatic model reduction of large networks 53




Nature likes good algorithms
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These additional feedbacks do exist

in real cell cycles (via indirections)

The cell cycle switch can exactly emulate AM
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What Contributes to Complexity?

- Indifference? (does not really cost much)
- Robustness? (resist point failures)

- Adaptability? (neutral paths)

- Noise resistance?  (improve signal processing)

- lemperature compensation?
- EtC.




Feynman’s Blackboard
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